Discontinuity-Preserving and Viewpoint Invariant Reconstruction of Visible Surfaces Using a First Order Regularization

نویسندگان

  • June-Ho Yi
  • David M. Chelberg
چکیده

This paper describes the application of a first order regularization technique to the problem of reconstruction of visible surfaces. Our approach is a computationally efficient first order method that simultaneously achieves approximate in\ nriance and preservation of discontinuities. Our reconstruction method is also robust with respect to the smoothing parameter The robustness property to I allows a free choice of the smoothing parameter I without struggling to determine an optimal 1 that provides the best reconstruction. A new approximately invariant first order stabilizing function for surface reconstruction is obtained by employing a first order Taylor expansion of a nonconvex invariant stabilizing function that is expanded at the estimated value of the squared gradient instead of at zero. The data compatibility measure used is the squared perpendicular distance between the reconstructed surface and the constraint surface. Thiv combination of stabilizing function and data compatibility measure is necessary to achieve invariance with respect to rotations and translations of the surfaces being reconstructed. Sharp preservation of disconbnuities is achieved by a weighted sum of adjacent pixels such that the adjacent pixels that are more likely to be in different regions are less weighted. The results indicate that the proposed methods for surface reconstruction perform well on sparse noisy range data. In addition, the volume between two surfaces normalized by the surface area (interpreted AS average distance between two surfaces) is proposed as an invariant measure for the comparison of reconstruction results. Index Term-surface reconstruction, regularization, invariance, preservation of discontinuities, robustness, invariant measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

Viewpoint-Invariant Reconstruction of Visible Surfaces

Stereoscopic VISIon delivers a sparse map of the range to various "matched" points or contours, in the field of view. This paper addresses the problem of explicitly reconstructing a smooth surface that interpolates those points and contours. It is argued that any scheme for surface reconstruction should be viewpoint-invariant; otherwise the reconstructed surface would "wobble" as the viewpoint ...

متن کامل

Reconstructing a Visible Surface

We address the problem of reconstructing the visible surface in stereoscopic vision. We point out the need for viewpoint invariance in the reconstruction scheme and demonstrate the undesirable "wobble" effect that can occur when such invariance is lacking. The design of an invariant scheme is discussed.

متن کامل

Three-dimensional Non-local Edge-preserving Regularization for PET Transmission Reconstruction

Tomographic image reconstruction using statistical methods can provide more accurate system modeling, statistical models, and physical constraints than the conventional filtered backprojection (FBP) method. Because of the ill-posedness of the reconstruction problem, a roughness penalty is often imposed on the solution. To avoid smoothing of edges, which are important image attributes, various e...

متن کامل

Discontinuity Preserving Regularization for Modeling Sliding Effects in Medical Image Registration

Sliding effects often occur along tissue/organ boundaries. However, most conventional registration techniques either use smooth parametric bases or apply homogeneous smoothness regularization, and fail to address the sliding issue. In this study, we propose a class of discontinuity-preserving regularizers that fit naturally into optimization-based registration. The proposed regularization encou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 17  شماره 

صفحات  -

تاریخ انتشار 1995